Physics 798C Spring24 Superconductivity Homework 6 **Due March 28, 2024**

1. Recall that we utilized the Bogoliubov-Valatin transformation to diagonalize the BCS model Hamiltonian:

 $\gamma_{k0}^+ = u_k^* c_{k\uparrow}^+ - v_k^* c_{-k\downarrow}$ and $\gamma_{k1}^+ = u_k^* c_{-k\downarrow}^+ + v_k^* c_{k\uparrow}^-$, thus defining operators that create Bogoliubons (quasiparticles). Show the following two results through explicit calculations using the BCS ground state wavefunction in the form $|\Psi_{BCS}\rangle = \prod_{l=1}^{l_M} (u_l + v_l c_{l\uparrow}^+ c_{-l\downarrow}^+) |0\rangle$:

- a) $\gamma_{k0}|\Psi_{BCS}\rangle = 0$, i.e. the BCS ground state is the vacuum state for quasiparticles,
- b) $\gamma_{k0}^+ |\Psi_{BCS}\rangle = c_{k\uparrow}^+ \prod_{l\neq k}^{l_M} (u_l + v_l c_{l\uparrow}^+ c_{-l\downarrow}^+) |0\rangle$, i.e. the γ_{k0}^+ operator creates a single (k,\uparrow) electron with probability 1, and leaves behind a handicapped BCS ground state for the remaining electrons.
- **2.** The Ginzburg-Landau differential equations can be used above T_c by having $\alpha(T)$ positive (it is negative below T_c) and, since Ψ will be small above T_c, dropping the cubic term. Suppose that $\Psi = \Psi_0$ at x = 0, and the material fills the region x > 0. Let $\mathbf{A} = 0$. Show that Ψ decays exponentially away from the boundary, with a characteristic length

$$\xi = [\hbar^2 / 2m*\alpha(T)]^{1/2}$$

This is in contrast to the behavior below T_c, where spatially-extended order parameters are possible.

This situation occurs even when the "superconductor" has $T_c = 0$, in which case the coherence length is called ξ_N , the normal-metal coherence length. The boundary condition $\Psi = \Psi_0$ at x = 0 can be created by having the normal metal be in electrical contact with a superconductor. This is the origin of the proximity effect, where superconductivity is induced in a normal metal by proximity to a superconductor. The superconducting electrons (or really a "pairing potential") have "leaked" from the superconductor into the normal metal.

3. A superconducting film is infinite in the y and z directions, and has thickness d in the x direction. It obeys the linear GL equation,

$$\frac{\partial^2 \psi}{\partial x^2} = -\frac{\psi}{\xi_{GL}^2(T)}$$

The left side of the film faces vacuum, and the right side is in contact with an infinite normal metal, so the boundary conditions are:

$$\frac{\partial \psi}{\partial x}\Big|_{x=0} = 0$$
 $\frac{\partial \psi}{\partial x}\Big|_{x=d} = -\frac{\psi}{b},$

 $\frac{\partial \psi}{\partial x}\Big|_{x=0} = 0$ $\frac{\partial \psi}{\partial x}\Big|_{x=d} = -\frac{\psi}{b}$, where b > 0 is the extrapolation length. Find T_c^{bilayer} of the bilayer as a function of d. (You will have to solve a transcendental equation by graphical or other means. Choose the solution for $\xi = \xi_0/[1 - T_c^{\text{bilayer}}/T_c^{\text{Bulk}}]^{1/2}$ that gives the highest T_c^{bilayer} .) Give explicit equations for d >> b and d << b. In the latter case, $T_c^{\text{bilayer}} = 0$ is not acceptable, the answer must include the next order term.

Continued on next page...

4. Consider a <u>normal metal</u> extending from -d/2 to +d/2 which is described by the linearized GL equation with A = 0,

$$\frac{\partial^2 \psi}{\partial x^2} = + \frac{\psi}{\xi_{GL}^2(T)}.$$

Why is there a "+" sign in this equation compared to that in problem 2, above? The normal metal is sandwiched between two superconductors, which impose the boundary conditions:

$$\psi = \psi_L$$
 at $x = -d/2$
 $\psi = \psi_R e^{i\gamma}$ at $x = +d/2$,

where ψ_L and ψ_R are real. Show that this leads to a solution in the normal metal which carries a supercurrent $J_s = \frac{q^*h}{m^*} Re[\frac{1}{i}\psi^*\nabla\psi]$, with $J_s = J_c \sin\gamma$, and find an explicit expression for J_c . How does J_c depend on d/ξ_N ? The equation for J_s was first derived by Josephson for tunnel junctions using microscopic theory, but applies to superconducting – normal – superconducting (SNS) junctions as well.